Permanent GNSS/GPS Station Planning: Technology, Equipment, Costs

Permanent GNSS Stations for Geodetic Applications: Equipment, Sites, Costs -- S. Fisher

This is intended as a primer for investigators wishing to implement permanent GNSS stations within their projects. A basic overview of equipment typically employed by UNAVCO investigators and site requirements is included, along with links to additional information contained on this and other web sites. We also include a summary of equipment sources and approximate costs to help with planning and budgeting of permanent stations.

For information or help, e-mail support@unavco.org.

[+] Site Characteristics

Site Foundation
- Local geology – consider proximity to faults, landslides, subsidence areas, etc.
- Bedrock foundation is preferred
- Soil or alluvium options require more extensive monumentation
- Roof tops are sometimes the only option -- near support structures on bearing wall buildings is best, if roof top location is required

Horizon mask
- Rule of thumb: minimize obstructions above 15°

Site security, ownership and permission
- Location must be secure and viable over long term

Multipath
- Rule of thumb: site should be at least 15 meters from reflective sources
- Antenna height: at ground seems good, but observed multipath high at some sites with ~.5 m height
- Avoid creating cavity between backplane and monument top
- Researchers are working on methods for calibrating site multipath -- one example is the AMCS project

Radio Frequency Interference (RFI)
- Rule of thumb: site should be at least 1 km from powerful microwave sources, independent of the frequency that they operate at

Co locations with other instrumentation
- Co-location with VLBI or SLR systems is desired at core global reference stations
 - High precision tie survey essential, but is difficult and requires specialized knowledge and capabilities – contact support@unavco.org for more information
 - Site infrastructure (site location, power and communications) can be shared with nearby seismic stations
 - Requires coordination with operator such as IRIS

Data quality assessment can be accomplished using the UNAVCO TEQC toolkit

More Information on Site Reconnaissance and Security from the UNAVCO Knowledgebase

[+] Monuments

- Short and deep drilled braced monuments are preferred by many
- Pillars are easier to build and good under the right conditions – avoid top of pillar effects on GNSS signal from rebar or metal mounting plates embedded in the pillar
- Reference marks and site/monument stability surveys are desired at core stations, such as IGS global stations
- More information on monumentation from the UNAVCO Knowledgebase
- More information on monumentation from the IGS web site
[+] GNSS Receivers

Tracking Performance

- General:
 - Dual frequency, many independent channels, up to 20Hz sampling, ~ 1 mm phase precision

- GNSS observables
 - Current:
 - GPS L1 C/A, L1 and L2 P, L1 and L2 phase (also under AS)
 - GLONASS L1 C/A Code, L1 P and L2 P, L1 and L2 phase
 - Coming soon:
 - Galileo – IOC/FOC 2010+ (anticipated)

- Performance measures
 - 99%+ of expected data
 - Cycle slips/observations <0.1%
 - MP1 and MP2 <0.5 m at elev. >10°
 - Zero baseline phase precision < 1 mm
 - Short baseline precision 2 mm horizontal/4 mm vertical

Features and Specifications

- Power consumption 3-10 W
- Memory up to many GB
- Multiple I/O ports
 - Log and output multiple formats simultaneously
 - Raw, RINEX, BINEX, RTCM SC104, etc.
- Command and control interface
 - Built in server technology supports http and ftp over TCP
 - Configuration over network by uploading configuration file
 - Serial commands and custom interface applications
- Environmental specifications: -40 to +60 C, humidity sealed
- Power management: ability to cycle power remotely and automatic restart in same configuration after power loss
- Ability to log and stream data from external sensors (met, tilt)
- Code and carrier multipath rejection and ability to disable
- External timing frequency input
- Highly reliable: Mean Time Between Failure (MTBF) ~60,000 hours

Commonly Used Models

- Link to UNAVCO Member equipment purchasing information
- Link to UNAVCO receiver test reports
- More information on receivers available from UNAVCO

[+] Antennas

- Stable, well defined phase pattern -- consistent between like models
- Backplane that rejects multipath
- Absolute calibrations of antenna and radome pair are now considered standard by IGS
- Current best practice: Gold standard is still the choke ring design with D&M element, which is produced by several manufacturers, but many question whether extra cost is worth it and are going with less expensive models
- More information on antennas available from UNAVCO

[+] Antenna Mounts

- Securely attach antenna to monument/tamper resistant
Ability to center, level and orient antenna in azimuth
Reduce potential for multipath by minimizing surface area (do not create resonant chamber behind antenna ground plane)
Current best practice: SCIGN mount or similar
More information on antenna mounts used by UNAVCO

[+] Radomes
- Material should be homogeneous and of uniform dimension
- Hemispherical shape with center of curvature at average (absolute) L1/L2 phase center Radome should be calibrated along with antenna
- Current best practice: Do not use radome unless required for weather, debris or vandal protection
- If used with a choke ring antenna, UNAVCO typically uses the SCIGN tall model
- More information on antenna radomes used by UNAVCO

[+] Ancillary Sensors
- Met – surface pressure and temperature at the GNSS antenna is required for water vapor applications
- Tilt – site and monument stability, slope monitoring, volcano deformation
- Data are typically logged within the GNSS receiver
- More information on meteorological sensors used by UNAVCO

[+] Power Systems
- Power budget is typically 6-20 W, depending on receiver model and communications
- Options include:
 - AC power with battery back up
 - DC with solar or wind generation systems
- More information on power systems and lightning protection used by UNAVCO

[+] Enclosures
- Securely house all station equipment
- More information on equipment enclosures used by UNAVCO

[+] Data Communications
- Communications solution depends on data requirement
- Options range from analog modems over circuit switched (telephone) networks to broadband satellite
- Use of public Internet is generally preferred
- More information on data communications equipment used by UNAVCO
- The following tables list data communications requirements for different GNSS applications and technology options to satisfy requirements

<table>
<thead>
<tr>
<th>Definition of Data Communications Requirements for Different Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Level 2:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Level 3:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Service</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>Broadband Internet</td>
</tr>
<tr>
<td>Dial-up/PPP</td>
</tr>
<tr>
<td>Cellular Technologies (CDMA, CDPD, GSM)</td>
</tr>
<tr>
<td>INMARSAT (BGAN and RBGAN)</td>
</tr>
<tr>
<td>Iridium</td>
</tr>
<tr>
<td>Shared VSAT Service</td>
</tr>
<tr>
<td>Dedicated VSAT</td>
</tr>
<tr>
<td>Private Wireless</td>
</tr>
</tbody>
</table>

[+] Equipment Costs and Sources for PBO Style Permanent Stations

<table>
<thead>
<tr>
<th>Item</th>
<th>Approximate Cost</th>
<th>P/N or Notes</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNSS Receivers</td>
<td>$3,400 to $12,000</td>
<td>Including antenna, Price depends on model and quantity ordered, PBO standard is Trimble NetRS with Choke Ring antenna</td>
<td>See UNAVCO Member Purchase Program for vendor contact</td>
</tr>
</tbody>
</table>

Monuments | . | . | . |
<table>
<thead>
<tr>
<th>Equipment</th>
<th>Price</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Drilled Braced Monument</td>
<td>$650</td>
<td>Plus required tools</td>
</tr>
<tr>
<td>Deep Drilled Braced Monument</td>
<td>$8,000 to $15,000</td>
<td>Depending on location, specialized drill rig required</td>
</tr>
<tr>
<td>Equipment Enclosure w/ DC backpanel</td>
<td>$950</td>
<td>Various. - See UNAVCO SDB monument web page</td>
</tr>
<tr>
<td>Solar DC Power System</td>
<td></td>
<td>Various. - See UNAVCO enclosure web page</td>
</tr>
<tr>
<td>2 x ~100 Ahr Gel battery</td>
<td>$250</td>
<td>Alternative - DEKA/MK 12-volt, 100-AH, Gel battery, or Similar</td>
</tr>
<tr>
<td>2 x 72-80 W Solar Panels</td>
<td>$900</td>
<td>Depending on Location</td>
</tr>
<tr>
<td>Solar panel mount</td>
<td>$200</td>
<td>Two panel model</td>
</tr>
<tr>
<td>SCIGN antenna mount</td>
<td>$550</td>
<td>See information on UNAVCO web site</td>
</tr>
<tr>
<td>SCIGN radome (tall model)</td>
<td>$220</td>
<td>See information on UNAVCO web site</td>
</tr>
<tr>
<td>Cellular Communications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellular modem</td>
<td>$795</td>
<td>Proxicast LAN-Cell Mobile Gateway Model 1XMG-401 - TDMA or ModelGPRS-401-GSM</td>
</tr>
<tr>
<td>Cellular antenna</td>
<td>$50</td>
<td>MaxRad WMLPVDB 800/1900</td>
</tr>
<tr>
<td>Antenna L-Bracket</td>
<td>$15</td>
<td>MaxRad MMK1924</td>
</tr>
<tr>
<td>Antenna base</td>
<td>$50</td>
<td>MaxRad MVP</td>
</tr>
<tr>
<td>Communications Service</td>
<td>$60-80/month</td>
<td>Verizon or Cingular depending on coverage area</td>
</tr>
<tr>
<td>Ethernet Radio</td>
<td>$1100 to 1300</td>
<td>Intuicom EB6 Plus - Price depends on quantity ordered, 2 or more required, includes antennas and cables, used for bridging to cellular or other internet connection</td>
</tr>
</tbody>
</table>

Various. - See UNAVCO DDB monument web page

Alternative Solar Products, 27412 Enterprise Circle West, Suite 101 Temecula, CA 92590, Tel. 866-532-8810

Alternative Solar Products, 27412 Enterprise Circle West, Suite 101 Temecula, CA 92590, Tel. 866-532-8810

or ETI Solar – Energy Technologies Inc. 101, 18327-105 Avenue Edmonton, AB, T5S 2K9 Canada, Tel. 780.489.3700

SCEC University of Southern California 3651 Trousdale Parkway, Suite 169 Los Angeles, California, 90089-0742 John McRaney, Tel. 213-740-5842

or Precision Design & Machine 6595 Odell Place, Suite F, Boulder, CO 80301 Tel. 303-527-3049, PDMachine@msn.com

SCIGN radome (tall model)

SCEC University of Southern California 3651 Trousdale Parkway, Suite 169 Los Angeles, California, 90089-0742 John McRaney, Tel. 213-740-5842

SCEC University of Southern California 3651 Trousdale Parkway, Suite 169 Los Angeles, California, 90089-0742 John McRaney, Tel. 213-740-5842

Cellular Communications

Cellular modem

Proxicast LAN-Cell Mobile Gateway Model 1XMG-401 - TDMA or ModelGPRS-401-GSM

Proxicast 312 Sunnyfield Drive, Suite 200 Pittsburgh, PA 15116-1936 Tel. 877-777-7694

Cellular antenna

MaxRad WMLPVDB 800/1900

Hutton Communications 2520 Marsh Lane, Carrollton, TX 75006 Tel. 877-648-8866

MaxRad MMK1924

Hutton Communications 2520 Marsh Lane, Carrollton, TX 75006 Tel. 877-648-8866

MaxRad MVP

Hutton Communications 2520 Marsh Lane, Carrollton, TX 75006 Tel. 877-648-8866

Communications Service

Verizon or Cingular depending on coverage area

Verizon Wireless P.O. Box 4001, Inglewood, CA 90313-4001 Tel. 888-466-4646

Cingular Wireless PO Box 30218, Los Angeles, CA 90030-0218 Tel. 800-331-0500

See UNAVCO Member Purchase Program for vendor contact
<table>
<thead>
<tr>
<th>Misc Supplies</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x N connector for LMR 400 cable -</td>
<td>$10 ea.</td>
<td>EZ-400-NMH</td>
</tr>
<tr>
<td>N-type 90° connector</td>
<td>$10 ea.</td>
<td>EX400NMH-RA</td>
</tr>
<tr>
<td>Liquitite conduit and connectors</td>
<td>$40</td>
<td></td>
</tr>
</tbody>
</table>

[+] Data Management and Network Monitoring

- **Data Retrievals**
 - Method depends on receiver type and communications
 - IP scripting for Internet capable receivers like NetRS
 - Batched and streamed protocols and data formats

- **Performance Monitoring and Verification**
 - Outage notification via Internet
 - For batched retrievals, file size check before retrying
 - Verification using TEQC
 - More sophisticated approach for streamed data (RAIM or other)
 - Metrics include expected vs. observed data, cycle slips, multipath, position residuals, retrieval latency

- **Data Available at Public Archives**
 - UNAVCO, SOPAC, CDDIS

Posted by: **Freddy Blume** - Mon, Dec 1, 2014 at 9:33 PM. This article has been viewed 44575 times.