Introduction to Structure-from-Motion

Edwin Nissen (Colorado School of Mines)
J Ramon Arrowsmith (Arizona State University)
Chris Crosby (UNAVCO/OpenTopography)

- What is Structure-from-Motion?
- High resolution topography:
 scientific motivations

~500 points/m² coloured point cloud along a ~1 km section of the 2010 El Mayor-Cucapah earthquake rupture generated from ~500 photographs captured in 2 hours from a helium blimp
Lidar (ALS, TLS, MLS)

- Expensive laser equipment required
- Works in densely-vegetated landscapes
- Uses precise time-of-flight measurements but prone to artifacts from GPS and IMU

Structure-from-Motion

- Requires only a cheap camera
- Coloured points & orthophoto for texture mapping
- Back-solves for camera parameters; warping artifacts are a common problem but easily mitigated

Johnson et al. (2014), Geosphere
Where it all started...
The original idea

Printed in Great Britain

The interpretation of structure from motion

BY S. ULLMAN

Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
545 Technology Square (Room 808), Cambridge, Massachusetts 02139 U.S.A.

(Communicated by S. Brenner, F.R.S. – Received 20 April 1978)

The interpretation of structure from motion is examined from a computational point of view. The question addressed is how the three dimensional structure and motion of objects can be inferred from the two dimensional transformations of their projected images when no three dimensional information is conveyed by the individual projections.
Where it all started...
The algorithm that powers SfM

Object Recognition from Local Scale-Invariant Features

David G. Lowe
Computer Science Department
University of British Columbia
Vancouver, B.C., V6T 1Z4, Canada
lowe@cs.ubc.ca

Abstract

An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection.
Where it all started...

- The **Scale Invariant Feature Transform (SIFT)** (Lowe, 1999) allows corresponding features to be matched even with large variations in scale and viewpoint and under conditions of partial occlusion and changing illumination.
Where it all started...
First use of the SIFT algorithm to generate large point clouds

Snavely et al. (2006). Photo Tourism: Exploring Photo Collections in 3D, *ACM Transactions on Graphics*

Snavely et al. (2007). Modeling the World from Internet Photo Collections, *International Journal of Computer Vision*

Using photographs from a **moving** camera (or cameras)...

... reconstruct the scene **structure** (i.e. the geometry of the target *and* the positions, orientations & lens parameters of the cameras)
Where it all started...
First geoscience applications

Traditional stereo-photogrammetry

Known camera height H and focal length f, and the baseline B between images

Match corresponding features

Measure distances between features on the camera image plane d, d'

Calculate relative positions of features b, h
Structure-from-Motion

Step 1

Match corresponding features and measure distances between them on the camera image plane d, d'

The Scale Invariant Feature Transform is key to matching corresponding features despite varying distances.
• The **Scale Invariant Feature Transform (SIFT)** (Lowe, 1999) allows corresponding features to be matched even with large variations in scale and viewpoint and under conditions of partial occlusion and changing illumination.
Structure-from-Motion

Step 2
When we have the matching locations of multiple points on two or more photos, there is usually just one mathematical solution for where the photos were taken.

Therefore, we can calculate individual camera positions \((x, y, z), (x', y', z')\), orientations \(i, i'\), focal lengths \(f, f'\), and relative positions of corresponding features \(b, h\), in a single step known as “bundle adjustment”.

This is where the term Structure from Motion comes from. Scene **structure** refers to all these parameters; **motion** refers to movement of the camera.
Step 3
Next, a dense point cloud and 3D surface is determined using the known camera parameters and using the SfM points as “ground control”.

All pixels in all images are used so the dense model is similar in resolution to the raw photographs (typically 100s – 1000s point/m²). This step is called “multiview stereo matching” (MVS).
Step 4

Georectification means converting the point cloud from an internal, arbitrary coordinate system into a geographical coordinate system. This can be achieved in one of two ways:
Structure-from-Motion

Step 4

Georectification means converting the point cloud from an internal, arbitrary coordinate system into a geographical coordinate system. This can be achieved in one of two ways:

- **directly**, with knowledge of the camera positions and focal lengths
Structure-from-Motion

Step 4

Georectification means converting the point cloud from an internal, arbitrary coordinate system into a geographical coordinate system. This can be achieved in one of two ways:

- **directly**, with knowledge of the camera positions and focal lengths

- **indirectly**, by incorporating a few ground control points (GCPs) with known coordinates. Typically these would be surveyed using differential GPS
Structure-from-Motion

Optional Step 5
Generate derivative products: Digital Surface Model and orthophoto for texture mapping

GPS base station
GCPs surveyed with roving receiver
Traditional stereo-photogrammetry

- Requires a stable platform such as a satellite or aeroplane at a fixed elevation
- Photographs collected at known positions with fixed orientations and incidence angles

Structure-from-Motion

- Photos from many angles and distances can be used, with no *a priori* knowledge of locations or pose
- Enables “unstructured” image acquisition from the ground, legacy air-photosets, or unmanned platforms
Lidar (ALS, TLS, MLS)

- Expensive laser equipment required
- Works in densely-vegetated landscapes
- Uses precise time-of-flight measurements but prone to artifacts from GPS and IMU

Structure-from-Motion

- Requires only a cheap camera
- Coloured points & orthophoto for texture mapping
- Back-solves for camera parameters; warping artifacts are a common problem but easily mitigated
SfM & MVS software

Table 1
Examples of open source and commercial software for photo-based 3d reconstruction.

<table>
<thead>
<tr>
<th>Software</th>
<th>URL (valid on 17 May, 2014)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freely available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFMToolkit<sup>a,b</sup></td>
<td>http://www.visual-experiments.com/demos/sfmtoolkit/</td>
<td>Similar software to above.</td>
</tr>
<tr>
<td>Toolbox (PPT)<sup>a,b</sup></td>
<td>http://www.cs.washington.edu/homes/ccwu/vsfm/</td>
<td>Advanced GUI with Windows, Linux and Mac. OSX versions. Georeferencing options, but camera model is more restricted than that used in Bundler.</td>
</tr>
<tr>
<td>VisualSFM<sup>d</sup></td>
<td></td>
<td>SFM only, but with more advanced camera models than all above (Farenzena et al., 2009). Provides output compatible with several dense matching algorithms.</td>
</tr>
<tr>
<td>3DF Samantha</td>
<td>http://www.3dflow.net/technology/samantha-structure-from-motion/</td>
<td></td>
</tr>
<tr>
<td>Web sites and services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photosynth</td>
<td>http://photosynth.net/</td>
<td>Evolved from Bundler. SFM only, no dense reconstruction. Can incorporate a very wide variety of images, but does so at the cost of reconstruction accuracy.</td>
</tr>
<tr>
<td>Pix4D</td>
<td>http://pix4d.com/</td>
<td></td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute3D</td>
<td>http://www.acute3d.com/</td>
<td>Software, originally based on close-range photogrammetry, now also implements SfM.</td>
</tr>
<tr>
<td>Photomodeler</td>
<td>http://www.photomodeler.com/</td>
<td>Underlying SfM engine is 3DF Samantha</td>
</tr>
<tr>
<td>3DF Zephyr Pro</td>
<td>http://www.3dflow.net/</td>
<td></td>
</tr>
</tbody>
</table>

Note: Table modified from http://www.lancaster.ac.uk/staff/jamesm/research/sfm.htm.

SfM = Structure from Motion; MVS = Multi-View Stereo.

Bemis et al. (2014). Ground-based and UAV-Based photogrammetry: A multi-scale, high resolution mapping tool for structural geology and paleoseismology. *Journal of Structural Geology*
Agisoft Photoscan Pro: $549 for an academic licence.

- Workflow includes both SfM and MVS, and builds DSM and orthophoto
- Intuitive graphical user interface (GUI)
- Data are georeferenced automatically if camera GPS stamps are available
- Camera calibration with Agisoft Lens
- Vertically-oriented orthophoto possible for trenching (see Reitman et al., 2015, BSSA)